Archive for Entomology

REFLECTIONS ON ARIZONA’S JEWEL SCARABS-Part 1

Posted in Arizona, Beetles, Insects with tags , , , , on September 27, 2010 by Dr. Art Evans

By Arthur V. Evans

I can still remember the very first Chrysina that I ever saw alive in Arizona. It was August 5, 1973 and Bob Duff and I had just set up our black lights in Bog Springs Campground in Madera Canyon. A soft-spoken man sporting a white t-shirt, khakis, and a crew cut came into our camp and introduced himself as Gayle Nelson. Only later did I discover that Dr. Nelson was one of the world’s leading authorities of jewel beetles (Buprestidae).

As the sun slowly set, the oaks all around us came alive with the buzzings of beetles. As Bob, Gayle, and I conversed, my eyes darted nervously this way and that  to each and every buzz in the bushes. This was my first night of black lighting in Southeastern Arizona’s Sky Islands and I did not want to miss any choice beetles! I did not know then that most of this crepuscular beetle activity was just the mating and feeding frenzy of several species of plain brown or black June beetles (Phyllophaga).

Just as darkness had completely descended upon us, I heard a bigger buzz followed by a thud. There on the sheet in front of me was an apple green beetle on its back with its lavender legs clawing at the air. I picked up the gorgeous beetle with my thumb and forefinger, only to discover that it’s powerful legs were tipped with needle-sharp claws. In spite of this surprisingly painful encounter, I was not about to let go of my very first Beyer’s jewel scarab, C. beyeri.

For several years afterwards the abundance of Chrysina at my lights were used as a barometer of sorts. I used their numbers, rightly or wrongly, as a way of measuring my success during many summer nights of black lighting in the mountains of Southeastern Arizona. Eventually my sensibilities began to change.

During the 1990’s, I collected specimens of C. beyeri and C. gloriosa alive and took them back to California for display in the Ralph M. Parsons Insect Zoo at the Natural History Museum of Los Angeles County, where I worked as the director. Both species thrived for several months on diets of oak leaves and juniper, respectively. Although the captive scarabs produced plenty of grubs, I made no effort to rear them to adulthood. To this day I regret not writing a formal description of the larva of Beyer’s jewel scarab and submitting it for publication; as of this writing, the immature stages of this species remain undescribed.

Now I regard species of Chrysina at my lights simply as old friends and no longer feel the urge to collect them in long series, if at all. I have heard stories of collectors and dealers with considerably less restraint collecting hundreds of specimens from the same mountain canyons, year after year. This annual carnage has led some people to wonder out loud whether or not Arizona’s Chrysina are in real need of some sort of legal protection. Nearly 30 years ago, Arnett and Jacques (1981) declared that both C. beyeri and C. gloriosa, which they mistakenly thought were the only species in the United States, were “…endangered and should not be collected.” However, on a warm and dry night in Madera Canyon this past July, all three species of Arizona’s Chrysina turned up at my light in good numbers. One species, C. gloriosa, was there in incredible abundance. Still, it would be worthwhile for a university or governmental agency to study the overall impact of intensive collecting on Chrysina populations in Madera Canyon and other popular collecting sites in southeastern Arizona.

Commonly known as jewel scarabs, the genus Chrysina is replete with incredibly beautiful, often metallic species. It includes nearly 100 species, most of which occur in Mexico and Central America. The four species in the United States are relics of a rich Neotropical fauna that expanded northward during more favorable (wetter) periods. For the past 10,000 years or so, these species were able to adapt to an increasingly warmer and drier climate by taking refuge in the high elevations of mountains.

 

Weldon Heald

 

The Southwest mountains inhabited by Chrysina are like stepping stones that bridge the gap between the temperate flora and fauna of the Rocky Mountains of the United States and the tropical biota of the Sierra Madre Occidental of Mexico. This archipelago of mountain “islands” in southeastern Arizona, southwestern New Mexico, and northern Mexico are surrounded by hot, dry desert “seas.” As such, they were dubbed “Sky Islands” nearly 60 years ago by the natural history writer Weldon Heald. Arizona’s Sky Islands are home to three species of Chrysina; the fourth American species is found in Texas.

All four of the American jewel scarabs were originally described in the genus Plusiotis. As a result of morphological and DNA evidence, the newer name Plusiotis was deemed redundant in relation to the older monicker Chrysina and it was formally synonymized by Dave Hawks (2001). The first species known in the United States, the glorious jewel scarab (C. gloriosa), was described by the father of American coleopterology, John L. LeConte in 1854. LeConte described this emerald-green and silver-striped species based on specimens collected at a copper mine in Texas that are now in the Museum of Comparative Zoology (MCZ) at Harvard.  These specimens were collected by the Secretary of the United States and Mexican Boundary Commission, Thomas Hopkins Webb. A physician from Rhode Island, Webb was appointed Secretary of the Commission in 1850, a position he held until 1854. In addition to his full-time position as Secretary, Webb enthusiastically collected insects, fishes, and reptiles and sent them to the leading authorities of the day. Later, he would become the secretary and principal executive officer of the Massachusetts Institute of Technology.

According to my friend, colleague, and Arizona scarabaeologist Bill Warner, C. gloriosa occurs in nearly all of the mountain ranges in at least the southern three-quarters of the state where their food plant, Juniperus, grows. Glorious jewel scarabs also occur in New Mexico, and Texas, as well as the Mexican states of Chihuahua and Sonora. With the onset of the summer monsoons, adults often spend their daylight hours feeding and resting on junipers; they are commonly attracted to lights at night, sometimes in large numbers.

In 1882, two years after LeConte’s death, another prominent coleopterist named George Horn described the second American species of Chrysina, LeConte’s jewel scarab (C. lecontei). His description was based on three examples now housed at the MCZ. These included one specimen from Tucson in the cabinet of England-born actor and entomologist Henry Edwards, another from LeConte’s cabinet collected in New Mexico by the curator of the insect collection at the University of Kansas, Professor Francis H. Snow, and a series in his own collection from Prescott, Arizona. Without any fanfare whatsoever, Horn ended his description by quietly dedicating the new species “to a friend.”

Warner notes that LeConte’s jewel scarab has essentially the same range in Arizona as the glorious jewel scarab, but that it is a bit more restricted to the higher altitudes where its food plant, the ponderosa pine, occurs. This species also occurs in New Mexico and the Mexican states of Chihuahua, Durango, Sinaloa, and Sonora.

 

Henry Skinner

 

The third American species of Chrysina was first exhibited by Horn on November 9, 1883 at a meeting of the entomological section of the Academy of Natural Sciences in Philadelphia. He presented two specimens collected in Rio Grande, Texas by his friend and Philadephia physician, Dr. Horatio C. Wood. Wood was a pioneer in American pharmacology who published numerous papers on pharmacology, physiology, and experimental therapeutics and taught neurology and internal medicine at the University of Pennsylvania. Early in his career Wood published papers in botany, entomology, and myriapodology. He traveled to the borderlands to collect specimens for the Smithsonian Institution and was one of the first white men to see the Grand Canyon. Wood recalled to lepidopterist Dr. Henry Skinner (1905) that the beetles he had given to Horn were either collected near El Paso, Texas, or in the valley of Tornellias [Tornillo] Creek at the great bend of the Rio Grande. The beetles were described in the minutes for the meeting as “pale malachite green, narrowly bordered with pale gold, the elytra are not striate, but with rows of fine punctures, the tarsi are beautifully violet.” Horn formally described Wood’s jewel scarab, Chrysina woodii, in 1885. These specimens are also housed in the MCZ. Horn noted that he saw another specimen in the Museum of the Jardin des Plantes in Paris. Wood’s jewel scarabs eat the leaves of walnut trees and are apparently diurnal, although some individuals are attracted to lights at night. It also occurs in Chihuahua, Mexico.

In 1905, Skinner, a gynecologist as well as co-founder and editor (1890-1910) of the Entomological News, described Beyer’s jewel scarab (C. beyeri) from four specimens collected in Carr and Miller Canyons in the Huachuca Mountains in southeastern Arizona. This handsome species first came to his attention the previous year when a specimen was sent to him from Reef in Cochise County. Reef was a mining camp in the southwest corner of Cochise County near the Mexican border. It was located in Carr Canyon in the Huachuca Mountains and was named for a noted landmark Carr Reef, an exposed and thick layer of rock. The site is now a campground in the Coronado National Forest. Skinner examined additional specimens presumably collected from the same locality by Beyer, Schaeffer, and Biederman. The Reef post office was officially relocated to Palmerlee (at the base of Miller Canyon) in December of 1904.

Gustav Beyer was a fur manufacturer from New York and an indefatigable insect collector who frequently travelled with his friend and Curator of Coleoptera at the Brooklyn Museum Institute of Arts and Sciences, Charles F. A. Schaeffer. Schaeffer spent a considerable amount of time collecting beetles at his three favorite haunts: Mt. Mitchell in North Carolina, the Lower Rio Grande Valley in Texas, and the Huachuca Mountains. Charles R. Biederman, a veteran of the Confederate Army and a resident of the Huachuca Mountains, was an ardent insect collector and is buried on his homestead in Carr Canyon. Before the advent of collecting Chrysina and other nocturnal beetles at light, both Biederman (1907) and another collector, Karl Coolidge (1911), noted a decided lack of success in obtaining specimens of C. beyeri, in spite of considerable searching about trees and in leaf litter. After finding a single specimen of C. beyeri in leaf litter, Biederman raked nearly two acres of leaves to find more beetles, but came up empty handed.

Beyer’s jewel scarab has the most restrictive distribution of all Arizona’s Chrysina and is known only from the Santa Rita, Patagonia, and Huachuca Mountains; it also occurs in the Animas Mountains of New Mexico and the states of Chihuahua and Sonora, Mexico. Adults feed on the leaves of Mexican blue oak, Quercus oblongifolia.

In 1915, Colonel Thomas Lincoln Casey, a noted and somewhat controversial coleopterist, described several species of Plusiotis, all of which have long been considered synonyms of the previously mentioned species.

Arizona’s jewel scarabs are not only popular with collectors and macro photographers, they also serve as wonderfully instructive subjects for scientific study, especially for scientists seeking to understand the physical qualities and adaptive significance of their brilliant colors. More on this subject will appear in the second and final installment of “Reflections on Arizona’s Jewel Scarabs.”

Sources:

Arnett, R. H., Jr, and R. L. Jacques. 1981. Simon & Schuster’s Guide to Insects. New York: Simon & Schuster. 511 pp.

Barnes, W. C. 1988. Arizona Place Names. Tucson, AZ: University of Arizona Press.

Biederman, C. R. 1907. Notes on Plusiotis beyeri Skinner. Entomological News 18: 7-9.

Burke, H. R. 2004. Notable Weevil Specialists of the Past. Charles Frederick August Schaeffer (1860-1934). Curculio 49: 5-7. Accessed on 26 September 2010 at: <http://www.texasento.net/Schaeffer.html#Burke>.

Calvert, P. P. 1926. The entomological work of Henry Skinner. Entomological News 37: 225-249.

Coolidge, K. R. 1911. Plusiotis beyeri Skinner. Entomological News 22: 326-327.

Evans, A. V. 2007. National Wildlife Federation Field Guide to Insects and Spiders of North America. New York: Sterling. 497 pp.

Hawks, D. 2001. Taxonomic and nomenclatural changes in Chrysina and a synonymic checklist of species (Scarabaeidae: Rutelinae). Occasional Papers of the Consortium Coleopterorum 4(1):  1-8.

Hawks, D. 2001. Checklist of Chrysina species (Scarabaeidae: Rutelinae: Rutelinae). (URL: http://www.unl.edu/museum/research/entomology/Guide/Scarabaeoidea/Scarabaeidae/Rutelinae/Rutelinae-Tribes/Rutelini/Chrysina/Chrysina-Catalog/ChrysinaC.html). In B.C. Ratcliffe and M.L. Jameson (eds.), Generic Guide to New World Scarab Beetles (URL: http://www-museum.unl.edu/research/entomology/Guide/Guide-introduction/Guideintro.html). Accessed on: 27 September 2010.

Horn, G. H. 1882. Notes on some little known genera and species of Coleoptera. Transactions of the American Entomological Society 10(1): 113-

Horn, G. H. 1885. New North American Scarabaeidae. Transactions of the American Entomological Society. 12: 117-128.

LeConte, J. L. 1854. Descriptions of the Coleoptera collected by Thos. H. Webb, M.D., in the years 1850-51 and 52, while Secretary of the U.S. and Mexican Boundary Commission. Proceedings of the Academy of Natural Sciences of Philadelphia 7: 220-225.

Leng, C. W. 1924. Gustav Beyer. Journal of the New York Entomological Society 32(4): 165-166.

Quincy, J. P. 1882. Memoir of Thomas Hopkins Webb. Proceedings of the Massachusetts Historical Society 19: 336-338.

Roth, G.B. 1939. An early American pharmacologist. Horatio C. Wood. 1841-1920. Isis 30(1): 38-45.

Skinner, H. 1905. Descriptions of new Coleoptera from Arizona with notes on some other species. Entomological News 16: 289-292.

© 2010, A.V. Evans

COW KILLERS LACK THE VELVET TOUCH

Posted in Ants, bees, wasps, Defense, Insects, Parental care, Predators/parasites/parasitoids with tags , , , , on September 22, 2010 by Dr. Art Evans

By Arthur V. Evans

Velvet ants, some of which are also known as cow killers, are actually solitary wasps. The females are wingless and sting, while the stingless males are fully winged. Although incredibly painful, the sting is seldom dangerous. Velvet ants are rarely abundant enough to need any sort of control and are best left alone to go about their business.

Velvet ant diversity is greater in southwestern United States, less so in the Southeast. Although there are more than 40 species of velvet ants found in the Southeast, only one species in the region, Dasymutilla occidentalis, stands out. It is the largest species of velvet ant in North America and occurs from Connecticut to Florida, west to South Dakota and Texas.

In spite of its nickname “cow killer,” the stings of the female D. occidentalis are not fatal to cattle. The bold and contrasting colors of this velvet ant serves to warn predators that they are quite capable of defending themselves. They also make a squeaking sound by rubbing two abdominal plates across one another as an additional warning. The stingless male is automatically defended by its close resemblance to the female.

Lone females are often seen wandering about on the ground in open habitats from spring through late summer. Winged males patrol these same habitats for mates. Both males and females drink nectar for their nourishment. After mating, females begin searching for the ground nests of bumble bees. Upon finding a nest, the female velvet ant lays a single egg at the entrance of a bumble bee nest. The larva develops inside the nest as an external parasitoid on a bee grub; pupation occurs in the bumble bee’s nest.

Resource: Evans, A.V. 2007. National Wildlife Federation Field Guide to Insects and Spiders of North America. NY: Sterling. 497 pp.

© 2010, A.V. Evans

TIPPING THE SCALES

Posted in Pests, Scale insects, Virginia with tags , , , , on September 19, 2010 by Dr. Art Evans

By Arthur V. Evans

Wax scales that is. Indian wax scales to be precise.

While trimming our nandina hedge this afternoon, I noticed a couple of small, white, barnacle-looking lumps on a stem. They were female Indian wax scales, Ceroplastes ceriferus (Fabricius). Sexing Indian wax scales is easy since males are not known in any wild population in Virginia. Adults are covered with a thick, white waxy layer that not only protects them from predators, parasitoids, and pesticides, but also helps them to survive freezing temperatures during the winter.

Reproduction is by parthenogenesis. One generation is produced annually in Virginia, but two or more appear in warmer climates. The first instars, or crawlers, hatch in spring and early summer and feed on leaves. They are not covered with a protective wax layer and are very susceptible to dehydration, parasites, and pesticides.

Adult Indian wax scales are conspicuous in late summer and early fall and suck sap from at least 122 plant species in 46 families. Prolific breeders, they quickly cover ornamental plants. Burgeoning wax scale populations not only ruin the plant’s appearance, but also cover them with sooty mold that develops on the prodigious amount of sticky waste (honeydew) that they produce.

Carefully tipping or lifting the scale to one side to detach the it from the plant stem reveals the orange and segmented body underneath. In the adjacent photo, the anterior of the body is on the lower right, while posterior is on the upper left. The mouthparts are visible and appear as a dark central spot at about the anterior third of the body.

Resource: Kosztarab, M. 1996. Scale Insects of Northeastern North America. Identification, Biology, and Distribution. Virginia Museum of Natural History, Special Publication No. 3. Martinsville, VA. 650 pp.

© 2010, A.V. Evans

SHARPSHOOTERS AND BROCHOSOMES

Posted in Leafhoppers, Parental care, Predators/parasites/parasitoids with tags , , , on September 17, 2010 by Dr. Art Evans

By Arthur V. Evans

Broad-headed sharpshooter, Oncometopia orbona.

Sharpshooters (Oncometopia species) measure 11-13 mm in length and are among the largest of North America’s leafhoppers. They feed on a wide variety of plants growing in gardens, parks, meadows, and woodland edges during summer and fall. Their sap feeding activities may spread plant pathogens. Females use their knifelike ovipositors to insert eggs into soft stems. The eggs are covered with a chalky substance (egg brochosomes) that make them more resistant to excess moisture and protect them from fungal infections and possibly attacks by parasitoids.

Broad-headed sharpshooter with brochosomes.

Brochosomes are intricately shaped proteinaceous particles that are produced by kidney-like structures called Malpighian tubules and excreted as a solution. After the sharpshooter molts, the solution is spread over the exoskeleton as a water-proof coating. Female sharpshooters store brochosomes as a single white dot on each forewing to be used later as a protective coating for their eggs.

© 2010, A.V. Evans

CAN YOU SAY OSMETERIUM?

Posted in Butterflies, Defense, Education with tags , , , , , , , on September 16, 2010 by Dr. Art Evans

By Arthur V. Evans

This summer a cadre of dedicated parents and volunteers joined forces at a nearby elementary school to create an outdoor classroom. The Holton Learning Project Garden includes a vegetable and butterfly garden that will introduce Holton Elementary School students, their families, and the residents of Belleview and beyond to the pleasures and benefits of urban gardening.

Compared to the dreary, sterile plantings of exotic trees, shrubs, and groundcovers found throughout much of the neighborhood, the vegetable and nascent butterfly garden has rapidly become a local hot spot for insects and spiders. As such, it provides an excellent site for macro photgraphy. Since August, I have endeavored to photograph as many of its multi-legged denizens as possible as part of an ongoing effort to document the arthropod diversity of my neighborhood in Richmond, Virginia.

While walking through the garden yesterday afternoon, I noticed several clumps of green spikes rising sadly from the straw-covered beds. I soon confirmed my initial suspicions as to the identity of the culprits that laid these once fat bunches of parsley to waste. At the very base of one of the clumps were two brightly banded larvae of the black swallowtail, Papilio polyxenes, polishing off the last few leaves.

When I knelt down to photograph the ravenous caterpillars, I accidentally brushed up against their food plant. Both caterpillars reacted immediately by assuming defensive postures. Bent over backwards, they spit up green fluid and produced a pair of long tentacles (osmeterium), that resembled bright orange horns. Soon my nostrils were filled with a strong, disagreeable odor that is best described as “spicy vomit.”

The osmeterium consists of two soft, finger-like tubes that are everted from inside the body through a slit in the prothorax just behind the head as a result of  increased blood pressure. This defensive gland is found in the caterpillars of swallowtail butterflies and is coated with highly noxious chemical compounds (2-methylbutyric acid and isobutyric acid) that deter predators, especially ants.

© 2010, A.V. Evans

BEETLES OF EASTERN NORTH AMERICA: GOLDENROD SOLDIER BEETLE

Posted in Beetles, Defense, Insects with tags , , , on September 15, 2010 by Dr. Art Evans

By Arthur V. Evans

The goldenrod soldier beetle, Chauliognathus pennsylvanicus (DeGeer) (9-12 mm).

Late summer and early fall is the time for goldenrod soldier beetles, Chauliognathus pennsylvanicus (DeGeer). Adults feed on pollen from various flowers, especially goldenrod (Solidago), growing in gardens, parks, fields, meadows, and along roadsides and woodland edges.

These conspicuous beetles are often used as research subjects by scientists studying mating behavior, color polymorphism, dispersal, and genetics. This common and widespread species is found over much of eastern North America, ranging from southeastern Canada south to Florida, west to Colorado and Texas.

The margined leatherwing, Chauliognathus marginatus (Fabricius) (7-15 mm).

The head of these conspicuous and aposematically marked beetles is black and the pronotum is wider than long. By contrast, the head of the early spring/early summer margined leatherwing (C. marginatus), has a thick v-shaped mark, while the pronotum is longer than wide. The dark elytral spots of both species are either confined to the posterior half of elytra or extend along their entire length.

Dead and contorted soldier beetles are sometimes found on plants with their mandibles imbedded in stems or leaf edges. These beetles have succumbed to an infection by Eryniopsis lampyridum, a fungal pathogen that also attacks other insects. The open wings of the fungal victims are thought to enhance dispersal of the killer fungus’ spores.

© 2010, A.V. Evans

A TALE OF PREDATOR AND PREY

Posted in Ants, bees, wasps, Arachnids, Predators/parasites/parasitoids, Spiders with tags , , , , on May 4, 2010 by Dr. Art Evans

By Arthur V. Evans

I had just spent a grueling three hours in the sweltering afternoon heat stalking insects and spiders with my camera along the James River. As I walked through the gate toward the parking lot at Reedy Creek, I saw a spider wasp with shiny dark wings flitting about agitatedly in the road. With another dozen or so exposures left in my camera, I decided to get a few pictures of the wasp before calling it a day. She flew all around me, landing briefly here and there before taking wing again. My patience quickly wore thin in the heat and I decided that enough was enough. But then I saw what had kept the wasp in the vicinity.

Lying perfectly still and in pristine condition was a wolf spider splayed out in the middle of the road. It had been laid low by the paralyzing sting of the spider wasp and was destined to be hauled off and stuffed down a nearby burrow to become fodder for a wasp larva. I decided to stake out the living corpse right then and there in the middle of the road. Sprawled out in the rapidly fading sun I aimed my camera at its still body in anticipation of photographing the predator with its prey.

For nearly ten minutes the wasp flew circles around me, frequently landing and running over the ground to search in vain for the hapless arachnid. At first I thought she was intimidated by my presence, but several times the wasp came within inches of me and my camera. Time seemed to drag on as the wasp inspected every piece of real estate in the immediate vicinity, except the tiny parcel that actually had the spider.

The occasional cyclist or jogger went past, but no one stopped to ask what I was doing. Then I heard the slow crunching of gravel coming toward me along the railroad tracks. A Richmond police car slowly wheeled toward me and stopped about 50 feet away. From my perspective down on the ground the car’s headlights seemed to stare at me like two giant bug eyes separated by shiny and toothed mandibles.

I smiled in the direction of the officer and wondered what he must be thinking. Just then a big panel truck hauling a trailer load of bright blue kayaks pulled up beside me. I looked up as the driver inquired if I was all right. I assured her that I was just fine and that I was waiting to take a picture of a wasp attacking a spider. She said she hated spiders and hoped the spider would meet its demise and then drove off to deliver her cargo by the river.

Then the police car pulled up. The officer told me that he did not want to ruin my shot and had decided to wait. But then he figured that if the kayak truck hadn’t spoiled my shot, his police cruiser probably wouldn’t either.

With all the hubbub I thought for sure that the wasp would have been scared off, but it was still scouring the ground in search of the spider. Finally it ran right up to the spider and inspected it nervously with its curled antennae. Suddenly it grabbed the spider’s leg with its mandibles and began to drag it away with surprising speed across the open ground.

Just as the wasp and spider cleared the roadway a thundering herd of about 40 young kayakers and their river guides stampeded over the site where I has just spent the past three-quarters of an hour on wasp watch. I paid them little attention as I crouched and crabbed along the access road paralleling the railroad tracks, following the wasp’s progress through my lens.

Every now and again the wasp would abandon the spider, apparently wandering off to reconnoiter the next leg of its journey. After a few minutes I could see the wasp negotiating its way back through the tangled growth.  As before, the wasp briefly inspected the spider with its antennae before grabbing a leg with its mouth and setting off on a new course.

The sunlight was beginning to fade when the spider wasp ditched her booty once again. I had two more shots left and decided to wait for the wasp to return one more time. I waited another 10 minutes or so for the wasp to come back, but it never did. I decided to call it a day and could only assume that the wasp was out somewhere, simultaneously excavating a spider’s grave and preparing a wasp’s nursery.

Excerpt from “What’s Bugging You? A Fond Look at the Animals We Love to Hate, University of Virginia Press. © 2008, A.V. Evans

%d bloggers like this: